

**Reduced-Vibrato Technique in Choral Performance:
Physiology, History, and Pedagogy**

Ashley J. Vance

PDG 519 – Vocal Pedagogy

Dr. Kathleen Roland-Silverstein

December 1, 2025

Syracuse University

© Copyright by Ashley J. Vance 2025
All Rights Reserved

Abstract

The use of vibrato in choral singing has been an aesthetic and technical debate for decades. Associated with blend, purity, and historically informed performance practice,¹ “straight tone” singing has at times been criticized for promoting vocal tension or inhibiting healthy function.² This paper proposes a vocally sustainable and stylistically flexible approach to reduced-vibrato singing, grounded in recent research on vocal efficiency and healthy muscle coordination. Although ambiguity remains around the neurological and physiological activity that causes vibrato,³ studies indicate that vibrato arises naturally from balanced respiratory and laryngeal oscillations.⁴ Therefore, the suppression of vibrato must not involve extrinsic muscular constriction, but instead, a reduction in airflow and subglottal pressure. Integrating contemporary vocal pedagogy, this paper presents practical strategies for achieving a “healthy minimization” of vibrato that maintains vocal economy, resonance, and expressivity.⁵ It also offers tools for choral conductors and voice teachers to guide singers toward individualized, healthy approaches to minimized-vibrato production that support both personal vocal integrity and ensemble cohesion. Ultimately, this study reframes straight-tone singing not as a rigid or potentially harmful stylistic demand, but as a flexible, coordinated technique rooted in vocal health and musical intention.

¹ Sherburn-Bly, Rebecca. “On the Voice: Straight Tone in the Choral Arts: A Simple Solution,” *The Choral Journal* 47, no. 8 (2007): 62. <https://shorturl.at/O86fW>.

² Wilcox, John C. “The ‘Straight Tone’ in Singing.” *Music Educators Journal* 32, no. 2 (1945): 63. <https://doi.org/10.2307/3386863>.

³ Sackett, Kyle. “Vocal Versatility: A Practical Guide for Contemporary Choral Singers, Teachers, Conductors, and Composers” (DMA diss., University of Wisconsin–Madison, 2024), 8, ProQuest (31766756).

⁴ Miller, Richard. *The Structure of Singing* (Schirmer Books, 1996), 312.

⁵ Katok, Danya. “HEALTHY MINIMIZATION OF VIBRATO: AN EXPLORATION OF ‘STRAIGHT TONE,’” *The Choral Journal* 62, no. 4 (2021): 13. <https://shorturl.at/Ki3Da>.

Introduction

Reduced-vibrato singing (often called “straight tone” or “nonvibrato”) has been part of Western classical choral tradition for centuries and continues to serve important roles in contemporary performance. This sound is associated with blend, tonal clarity, and historically informed performance practice. Yet for decades, many voice teachers and performers have argued that straight tone is inherently unhealthy and will lead to long-term vocal problems. While reduced-vibrato singing can be harmful when paired with poor habits—such as inadequate breath management or faulty vocal fold adduction—the technique itself is not problematic. In fact, reduced-vibrato singing can be expressive, artistic, and stylistically essential in many settings.

Current voice science demonstrates that the challenges often attributed to straight tone stem not from the audible absence of vibrato, but from insufficient airflow,⁶ subglottal pressure, or misconceptions about the style—such as the belief that it must be sung softly or with a “restrained” sound. When approached with healthy technique, reduced-vibrato singing is just as sustainable as any other vocal style, though it requires appropriate training and guidance.

For modern musicians—from professionals to choral directors to developing students—versatility and technical flexibility are indispensable. To support this, both voice teachers and choral conductors must understand the physiological and pedagogical foundations of healthy singing across styles, ensuring that students gain full access to their vocal instrument. Introducing reduced-vibrato technique in the classroom and studio is an important and achievable responsibility at every level of instruction. With practical tools, informed pedagogy,

⁶ Katok, “HEALTHY MINIMIZATION OF VIBRATO,” 13.

and a collaborative approach, teachers can equip singers to perform reduced-vibrato with confidence, health, and artistic intention.

The Physiology of Vibrato

Before teaching reduced-vibrato singing, it is essential to understand the physiology of vibrato and the muscular coordination involved in healthy tone production. According to pedagogue Richard Miller—and supported by current voice science—vibrato is a “pitch variant produced as a result of neurological impulses that occur when proper coordination exists between the breath mechanism and the phonatory mechanism.”⁷ Acoustically, vibrato is perceived as a periodic tremor in the voice, and its rate and extent serve as indicators of healthy production. The average vibrato rate falls between 5–7 cycles per second,⁸ with a pitch extent of approximately a semitone above and below the fundamental frequency. When a singer’s vibrato deviates significantly from these averages, it may manifest as a wobble (slower, wider oscillations) or a bleat (faster, narrower oscillations).

Despite decades of research, aspects of vibrato remain somewhat enigmatic to vocal pedagogues. Several structures in the vocal tract—such as the velum, laryngeal depressor muscles, lateral pharyngeal walls, and epiglottis—have been shown to synchronize with vibratory oscillations. While the muscular involvement is increasingly well understood, the neurological mechanisms continue to be studied. Rebecca Sherburn-Bly’s article “On the Voice: Straight Tone in the Choral Arts” notes that the vagus nerve also plays a role in determining each singer’s unique vibrato rate.⁹ The vagus nerve stimulates the laryngeal mechanism, particularly the

⁷ Miller, *The Structure of Singing*, 312.

⁸ William Vennard, *Singing: The Mechanism and the Technic* (Carl Fischer, Inc., 1968), 204.

⁹ Sherburn-Bly, “On the Voice,” 62.

cricothyroid muscle, which is central to pitch regulation; the frequency of vagal pulsation corresponds closely with the audible vibrato rate.

Current voice scientists and pedagogues theorize that vibrato is the natural byproduct of flow phonation and efficient, unencumbered tone production. This means that singing *without* vibrato is typically a deliberate choice for most trained vocalists. While younger or less developed singers often produce less audible vibrato, experienced singers generally exhibit a naturally perceptible vibratory pattern. A common misconception—often stemming from the term “straight tone”—is that reduced-vibrato singing involves the absence of vibration. Physiologically, this is impossible: phonation itself depends on the oscillation of the vocal folds. Vibration is always present, but in reduced-vibrato singing the oscillatory variation is no longer audible. When executed correctly, this reduction in audible vibrato occurs because the singer slightly decreases airflow, which lowers subglottic pressure. This, in turn, reduces the degree of vocal fold closure so that primarily the inner edges of the vocalis muscles approximate.¹⁰

Researchers like Heidi Moss further emphasize the importance of cognitive influence on vocal function.¹¹ Even the mental act of intending to sing without vibrato can prompt the neuromuscular system to adjust accordingly, demonstrating the profound integration of brain, breath, and phonation in shaping vibrato, and the voice as a whole. Ingo Titze, one of today’s most influential voice researchers, theorizes that just before phonation, a singer recalls their intended pitch and tone, prompting the brain to initiate a specific sequence of laryngeal muscle activations to achieve that goal. Simultaneously, small neuromuscular fluctuations—known as “tremor frequencies”—occur and layer onto this process. These tremors work in tandem with the

¹⁰ Steven W. Smith, *The Naked Voice: A Wholistic Approach to Singing*, (Oxford University Press, 2007): 67-8.

¹¹ Heidi Moss, “A Copernican Shift: Reframing How We Think About Breath in Singing,” *Journal of Singing* 79, no. 2 (2022): 233-242, <https://doi.org/10.53830/IWVK1586>.

primary oscillatory activity of the muscles that produce vibrato. Central to this mechanism are the cricothyroid (CT) and thyroarytenoid (TA) muscles, which play the leading roles in regulating pitch and vibratory pattern.¹²

Differences Between Vibrato and Nonvibrato Singing

The primary difference between singing with vibrato and singing with reduced vibrato lies in the engagement of specific laryngeal muscles and the amount of subglottal air pressure. The cricothyroid muscle appears to be the principal muscle involved in generating vibrato, oscillating at the same rate as the audible vibrato frequency. The thyroarytenoid and cricoarytenoid muscles generally exhibit matching oscillatory patterns as well.¹³ For healthy phonation, these intrinsic laryngeal muscles must coordinate in balanced antagonism. Because vibrato reflects this muscular flexibility, it is often considered a protective feature that helps prevent fatigue. During vibrato, the intrinsic musculature alternates between periods of activation and relative release; however, in reduced-vibrato singing, the muscles remain continuously engaged rather than cycling through this “work–rest” pattern.¹⁴ As with any mode of phonation, extended reduced-vibrato singing can lead to fatigue—especially when produced for too long, too high, too loudly, or too softly.¹⁵

¹² Ingo R. Titze, Brad Story, Marshall Smith, and Russel Long, “A reflex resonance model of vocal vibrato,” *The Journal of the Acoustical Society of America* 111, 2272-82. <https://doi.org/10.1121/1.1434945>.

¹³ Gayle Walker, “Vibrato, Science, and the Choral Singer,” *The Choral Journal* 47, no. 6 (2006): 37.

¹⁴ John Large and Shigenobu Iwata, “The Significance of Air Flow Modulations in Vocal Vibrato,” *The NATS Bulletin* 32, no. 3 (1976): 44.

¹⁵ Sherburn-Bly, “On the Voice,” 62.

However, the most significant distinction between vibrato and reduced vibrato often comes from differences in air pressure. Most voice pedagogues identify three types of phonatory onsets: pressed, breathy, and balanced or “flow” phonation. In flow phonation, the airflow entering the vocal mechanism is appropriately balanced with the adductive force of the vocal folds, resulting in balanced subglottal pressure. Pressed phonation occurs when air pressure is too high, causing over-adduction of the vocal folds and excess tension. Breathy phonation, by contrast, results from either excessive airflow with insufficient fold closure or too little airflow leading to under-adduction. Flow phonation is considered the optimal coordination for healthy singing, and vibrato is most consistently present in this state. For this reason, vibrato is often associated with well-balanced technique and efficient vocal production.

In their study on vibrato in trained singers, Junseo Cha and Seong Hee Choi monitored activity in the extrinsic laryngeal muscles during singing with and without vibrato. They focused on the IH (infrahyoid) and SH (suprahyoid) muscle groups. The IH muscles—sternohyoid, omohyoid, sternothyroid, and thyrohyoid—are the “strap” muscles below the hyoid bone that help lower and stabilize the larynx. The SH muscles, located above the hyoid, assist in lifting or shifting the larynx by raising the hyoid and are closely involved in pitch elevation. Their results showed that activity in both muscle groups increased significantly as pitch rose and was markedly higher when singers produced vibrato than when they sang without it.¹⁶ This aligns with existing evidence that vibrato involves greater laryngeal engagement. Importantly, increased activity is not problematic; with adequate airflow and appropriate subglottic pressure (flow phonation), these muscles can function efficiently and without undue tension.

¹⁶ Junseo Cha, and Seong Hee Choi, “Extrinsic Laryngeal Muscle Activity and Vocal Economy in Professionally Trained Voices During Vocal Vibrato,” *Journal of Voice*, 32 (2024): 1-12, <https://doi.org/10.1016/j.jvoice.2024.07.009>.

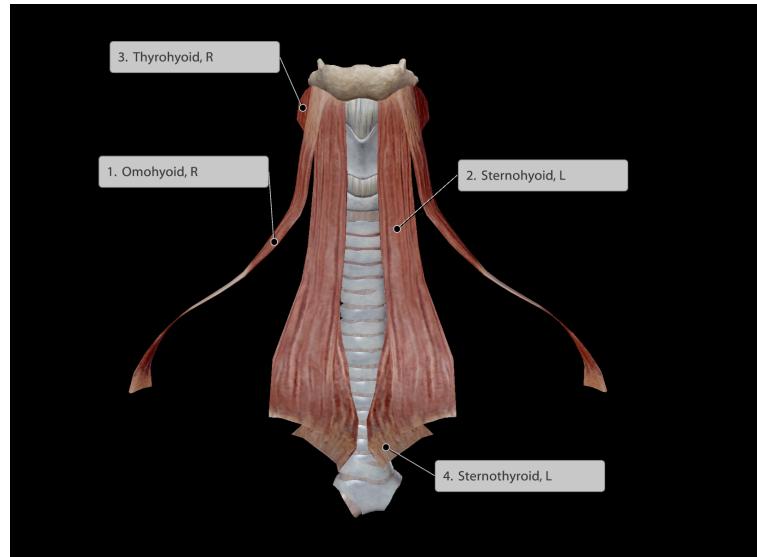


Figure 1. *Anterior view of the infrathyroid ("strap") muscles.*

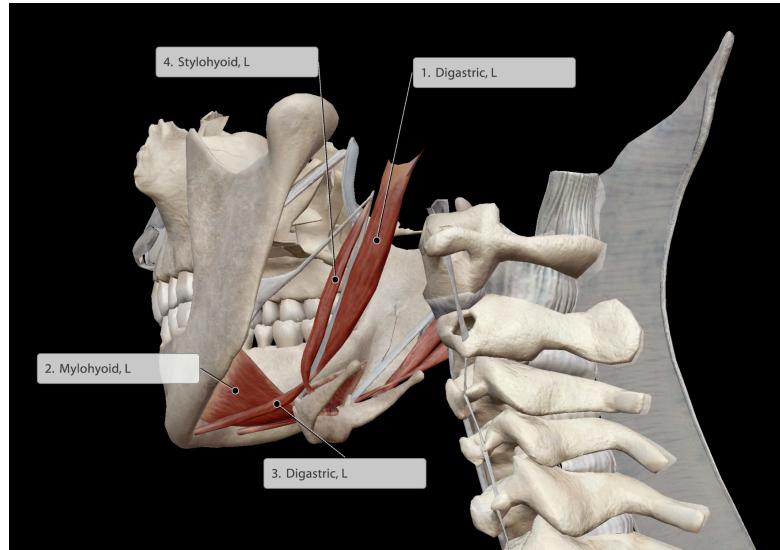


Figure 2. *Lateral view of the suprathyroid muscles.*

In a study led by Steven Todd Weber, twenty trained vocalists ages 18–25 sustained an [a] vowel across combinations of pitch (high and low), dynamic (loud and soft), and tone type (vibrato and reduced-vibrato). The results showed no significant differences in vocal intensity

between vibrato and reduced-vibrato production in most conditions. The only exception occurred in the high-loud combination, where vibrato yielded notably greater intensity. In all other scenarios, intensity remained comparable across the two tone types. These findings challenge the common assumption that reducing vibrato automatically diminishes volume or intensity. However, because the participants were trained singers with the skills to produce healthy, efficient straight tone phonation, teachers should not assume that undeveloped or untrained voices can achieve similar intensity when singing reduced-vibrato.¹⁷

The Decades-Long Pedagogical Debate

The debate over “vibrato versus straight tone” has persisted in choral and vocal circles for decades. Although modern voice science indicates that reduced-vibrato singing can be healthy, many well-intentioned and knowledgeable voice teachers claim that the absence of vibrato reflects faulty technique or unhealthy tension, and they often treat it as a problem to be corrected. While it is true that singers who struggle to produce vibrato may be experiencing tension or inadequate breath support, the issue lies in stopping the conversation there. Reduced-vibrato singing should be understood as a legitimate technique in its own right—one that can be executed healthily and artistically with proper training, practice, and guidance.

On the other hand, choral directors often insist on “straight tone” singing and may view vibrato as problematic in an ensemble context. This stems largely from the priority placed on *blend*—the goal of achieving a unified tone color, vowel shape, and overall sound across the choir. Since ensemble singing relies on this cohesion, it is understandable that directors are cautious about vibrato. Each singer’s vibrato is unique in both rate and extent, producing subtle

¹⁷ Weber, Steven Todd. “An Investigation of Intensity Differences between Vibrato and Straight Tone Singing” (DMA diss., Arizona State University, 1992), ProQuest (303975730).

oscillations of pitch—often around a quarter-tone above and below the fundamental frequency. As a result, even when imperceptible to the casual listener, these micro-variations mean that no two voices are aligning exactly in pitch at any given moment. This can create a texture that feels slightly out of tune or unbalanced, which explains why choral conductors often encourage minimizing vibrato for the sake of ensemble unity.

It is also important to recognize that not all choral directors promote reduced-vibrato singing, and many educators are acutely aware of the potential harm associated with rigid “straight tone” expectations. For example, leaders in the choral field—Jennaya Robison, Sarah Brailey, Karen Brunssen, and Mari Isabel Valverde—presented a session titled “Let’s Vibrate! On Liberating the Fullness of the Feminine Voice” at the 2023 American Choral Directors Association conference.¹⁸ This reflects meaningful progress toward challenging pedagogical practices that may place untrained or developing singers at risk.

The reduced-vibrato debate has been present for decades, and choral professionals are increasingly attentive to emerging voice science, recognizing the importance of staying current with research in order to provide students with the healthiest, most informed instruction possible. A compelling question arises: does the push for (or disapproval of) reduced-vibrato stem from health-related concerns, stylistic priorities, or a mixture of both? In many cases, conductors who enforce strict reduced-vibrato expectations prioritize the musical product over the well-being of the vocal instruments producing it—a pedagogical approach that is ultimately unsustainable.

Thus, the widespread reexamination of reduced-vibrato practices is both necessary and encouraging. As new research emerges and as singers share their experiences, it is essential for choral directors and voice teachers to remain flexible, responsive, and willing to revise long-held

¹⁸ Andrew P. Schmidt, “Choral Vibrato: The Hundred Years’ War,” *The Choral Journal* 64, no. 6 (2024): 22. <https://shorturl.at/mNtl6>.

assumptions. Such openness not only supports healthier singing but also ensures that the choral field continues to evolve in ways that serve both artistry and the vocalists who create it.

Historical Choral Practices and Their Contemporary Implications

Historically informed performance (H.I.P.) also plays a significant role in this discussion. In many choral settings—especially professional ones—the H.I.P. movement has resurged, emphasizing performance practices that reflect the sound world of Renaissance and Baroque composers. Because these composers wrote for instruments and timbres very different from those of later eras, the resulting aesthetic contrasts sharply with the richer, more vibrato-forward sound associated with Romantic repertoire. Renaissance choral music, in particular, centers on polyphony: multiple independent vocal lines interweaving to create intricate harmonies and shared musical gestures. Motets from this period were often written for five distinct voice parts, each with its own melodic and rhythmic identity. In this context, the use of vibrato was largely uncommon. With several voice lines already working contrapuntally, the addition of multiple independent vibrato rates could disrupt the clarity of the texture, interfere with tuning, and obscure cadential resolutions. Straight tone singing, therefore, aligns more closely with the composer's original sonic intentions and supports the transparency required for this repertoire.

Similarly, the choral and vocal music of the Baroque period calls for a sound that is best supported by reduced-vibrato singing. The quick, flowing melismatic passages characteristic of composers like Bach and Handel demand agility and clarity—qualities that can be hindered by excessive vibrato. The buoyant, dance-like energy of Baroque music also contrasts sharply with the richer, more dramatic vocal style associated with Romantic composers such as Brahms and Verdi. Even Baroque string playing favored a bright, pure tone with minimal vibrato, further

reinforcing the aesthetic of clarity and lightness. In this context, singing works like *Handel's Messiah* with heavy vibrato would not only conflict with the intended style but would also be vocally fatiguing, as the writing is designed to be light, agile, and airy.

It is also important to note that during the Renaissance and Baroque periods, women were generally not permitted to sing in choral settings, especially in religious contexts. Treble lines were typically performed by boys, countertenors, or castratti—for example, imagining Bach's *Magnificat* sung entirely by male and boy choirs reflects the vocal forces of the time. While women did participate in secular music and occasionally served as soloists in sacred works, they were not involved in choral ensembles. Because young voices naturally produce little to no vibrato, the performance style of the era developed hand-in-hand with the vocal timbre available to composers. This historical context matters today, as adult female singers—particularly those with formal training—naturally produce a more developed vibrato than young boys. Conductors must therefore allow for flexibility when interpreting early music. It is neither feasible nor respectful to ask modern sopranos to imitate the sound of children's voices. The ongoing conversation around historically informed performance must balance fidelity to past practices with an awareness of present-day voices and a commitment to avoiding outdated prejudices that could limit healthy and inclusive music making.

Because both vibrato and reduced-vibrato singing are stylistically necessary in different musical contexts, it is essential for singers to be trained to access each technique in a healthy, sustainable way. In collegiate programs, for example, vocal performance majors are often required to participate in choral ensembles, and choral music educators are typically required to take private voice lessons. This means that anyone pursuing a career in vocal music must develop versatility and self-awareness, enabling them to move between styles without causing

vocal fatigue or injury. The extent to which voice teachers and choral conductors address these techniques will naturally depend on the skill level, experience, and repertoire of the singer or ensemble.

In elementary and middle school choral contexts, it is unlikely that the singers are at a skill level or maturity level to have the self-awareness needed to adjust their voice to have less vibrato or more vibrato. Besides, at that level, there are many important things that choral educators need to teach—literacy, pitch, rhythm, and overall general music knowledge. It is not practical to have conversations about vibrato in these contexts, unless it is with a highly skilled young group that has time for these discussions. So, the primary focus for encouraging vocal health in young singers needs to be about flexibility and breath-to-sound connection.¹⁹ Young voices will likely not sing with a lot of vibrato until they are a bit older, but many music educators also insist that teachers should not be directly asking young choirs to sing “straight-tone,” or even mention vibrato vs. reduced-vibrato at all. The goal of the elementary choral music educator is to teach young singers to produce a healthy and free tone, whether it has audibly perceptible vibrato or not. As singers progress in maturity and vocal development, teachers gain more opportunities to address the role of vibrato in both solo and choral contexts.

Regardless of a singer’s age or experience level, it is essential for teachers to understand the vocal mechanism and the best practices for achieving healthy, efficient vocal production. Because many choral music education programs offer limited training in vocal pedagogy, it often falls to individual teachers to ensure they are properly equipped with this knowledge. In his article “The ‘Straight Tone’ in Singing,” John C. Wilcox cites the Chicago Singing Teachers Guild, which emphasizes that both voice teachers and choral directors must have a solid

¹⁹ Darryl Edwards, “‘No Vibrato’: Straight-Tone Singing in Choirs,” *Canadian Music Educator* 45, no. 1 (2003): 25-26. <https://shorturl.at/mvSq8>.

understanding of vocal function in order to teach effectively.²⁰ Just as choral conductors must take responsibility for learning vocal pedagogy, voice teachers must also be familiar with choral techniques and expectations.

Choral directors carry the significant responsibility of teaching vocal technique to many students at once—a task that can be more complex than working with a single student in a private lesson. Time constraints often prevent individual assessment, making it difficult to identify when a particular singer is approaching technique in an unhealthy way. For this reason, collaboration between choral directors and voice teachers is crucial to ensuring a healthy and fulfilling vocal experience for students. Examples of effective collaboration include a choral conductor observing a student’s private lesson or a voice teacher leading warm-ups during a choir rehearsal. Such cooperative practices strengthen vocal education and support the well-being of the singers.

Healthy Nonvibrato Singing

Although vibrato is closely associated with flow phonation and often contributes to greater vocal intensity, there are musical and stylistic contexts in which reduced vibrato is desirable. Healthy straight-tone singing is achievable, but it requires specific adjustments. Because reduced-vibrato production involves more constant contraction of the intrinsic laryngeal muscles, singers must lower subglottal air pressure to prevent fatigue. To do this without collapsing into breathy phonation—which is also fatiguing—the singer must reduce airflow so that subglottal pressure decreases in proportion. Attempting to minimize vibrato with the same airflow and pressure used for vibrato phonation produces a pressed, tense sound and quickly leads to fatigue. Thus, the goal is not to work harder to maintain muscular engagement, but to

²⁰ Wilcox, “The ‘Straight Tone’ in Singing.” *Music Educators Journal* 32, no. 2 (1945): 62. <https://doi.org/10.2307/3386863>.

lighten the airflow—a counterintuitive yet essential shift. When airflow is reduced, the vocal folds adduct less firmly than they do in vibrato phonation, but this is not problematic as long as airflow and adduction remain in balance.

Singers must also remain mindful of pitch, dynamic level, and duration when singing with minimized vibrato. Since vibrato can assist with producing intensity in the upper register, reducing it on high pitches may encourage compensatory tension. Likewise, producing straight tone too softly may result in under-adduction and breathy phonation, while singing too loudly can lead to over-adduction and pressed phonation. In all cases, balanced flow phonation remains the essential foundation for healthy reduced-vibrato singing.

A simple, accessible tip for teaching singers to achieve healthy reduced-vibrato is the “fog the window” exercise: have singers silently exhale with a hand in front of their mouth so they can physically feel the airflow. Next, they exhale for two beats and then transition into a neutral vowel, such as [u] or [i]. Other useful exercises include gentle slides on syllables like [wo] and [u], often starting with intervals of a fifth and gradually expanding as the singer becomes more comfortable with the technique. If singers struggle to initiate phonation with a balanced onset, beginning with an [h] sound can help.²¹

When singing with reduced vibrato, the sensation should be of an even, continuous stream of air, producing a “hooty” quality similar to a flute. Feeling this airflow physically helps singers understand what constitutes a healthy approach to minimized vibrato.²² If a singer does not experience a steady air stream while producing a reduced-vibrato sound, they are likely either pressing the sound or using insufficient breath support.

²¹ Katok, “HEALTHY MINIMIZATION OF VIBRATO,” 17.

²² Ibid., 16.

Other Considerations for Choral and Voice Teachers

Terminology can be a significant factor in promoting—or inhibiting—healthy reduced-vibrato singing. The term “straight tone” has often been used to describe reduced-vibrato singing, but because every voice naturally produces some vibration, this label is misleading and can create unnecessary tension, particularly for young or inexperienced singers. The term “reduced-vibrato singing” is more accurate: while vibrato remains physiologically present, it may not be audibly perceptible when minimized. Framing the technique in this way encourages singers to maintain the same healthy habits they use during vibrato singing, such as flow phonation and proper breath support. Similarly, Olaf Christensen, an American composer and second conductor of the St. Olaf Choir, preferred the term “stabilized vibrato,” in which “the pitch deviation is limited to a reasonable extent.”²³

Conversely, forcing vibrato is also counterproductive, as it can lead to a pressed tone in both vibrato and reduced-vibrato singing. Voice teachers should remind students not to force vibrato and that its presence is not an absolute indicator of vocal health or beauty.²⁴ Each voice is unique, and there is no single combination of vocal qualities every singer must possess. Singers who feel compelled to conform to a particular sound often develop tension in their voices. Therefore, it is crucial for teachers to foster autonomy, guiding students to assess what works for their individual instrument and reinforcing that a “one-size-fits-all” approach does not apply in vocal training.

For choral directors, singer placement within the ensemble is another important consideration. Experienced conductors often recommend positioning singers with a naturally

²³ Margaret Olson. “Vibrato vs. Nonvibrato: The Solo Singer in the Collegiate Choral Ensemble.” *Journal of Singing* 64, no. 5 (2008): 562. <https://tinyurl.com/324d24aa>.

²⁴ Sackett, “Vocal Versatility,” (DMA diss., University of Wisconsin–Madison, 2024): 5.

prominent vibrato toward the center of the choir, while those with naturally minimized vibrato are placed on the outer sections.²⁵ This approach helps create a balanced blend without requiring singers to alter their natural tone. It can also be helpful to group “heavier” voices—louder singers with more vibrato—together so they do not feel pressured to reduce their sound when adjacent to softer voices. Conversely, placing softer singers next to stronger voices may prevent them from hearing themselves and feeling like an equal contributor (and all voices are!), which can be counterproductive for the ensemble as a whole. When singers feel comfortable and supported in the ensemble, they will make their healthiest and most expressive sound.

²⁵ John F. Warren, “Placing Your Singers for Optimal Sound,” Unpublished manuscript.

Conclusion

Singing reduced-vibrato can—and should—be a vibrant, healthy, and expressive vocal choice. The problems commonly associated with “straight tone” stem not from the absence of vibrato itself, but from incorrect technique, inefficient airflow, and imbalanced subglottic pressure. These issues compromise not only vocal health, but also a singer’s capacity for artistry, individuality, and emotional expression. As William Vennard observes, “When I hear the concerts of choirs whose conductors have worked to eliminate all solo quality, I miss this vibrancy.”²⁶ Singers possess a uniquely personal instrument, and stripping away the characteristics that make each voice distinct diminishes both the soul of the performance and the singer’s ability to sing freely and sustainably. It is understandable, then, why there is significant criticism of reduced-vibrato approaches when they are implemented rigidly or without healthy technique.

Yet reduced-vibrato singing can be radiant and compelling when taught responsibly. By equipping singers with practical tools—such as managing airflow, using accurate terminology, understanding the bright and present sound appropriate for Renaissance and Baroque styles, and encouraging each vocalist to honor their individual instrument—directors can foster vocal production that is both stylistically appropriate and vocally efficient. Ultimately, the vibrato-versus-straight-tone debate represents only a small part of a larger pedagogical goal. What matters most is that each singer develops the technical understanding to make informed, healthy choices in any context. When singers bring their healthiest, most authentic voices to the ensemble, the resulting music is at its most powerful, unified, and fulfilling.

²⁶ Walker, “Vibrato, Science, and the Choral Singer,” 36.

Bibliography

Cha, Junseo, and Seong Hee Choi. "Extrinsic Laryngeal Muscle Activity and Vocal Economy in Professionally Trained Voices During Vocal Vibrato." *Journal of Voice*, 32 (2024): 1-12. <https://doi.org/10.1016/j.jvoice.2024.07.009>.

Edwards, Darryl. "'No Vibrato': Straight-Tone Singing in Choirs." *Canadian Music Educator* 45, no. 1 (2003): 25-26. <https://www.proquest.com/scholarly-journals/no-vibrato-straight-tone-singing-choirs/docview/231199850/se-2>.

Guzman, Marco, Adam Rubin, Daniel Muñoz, and Cristina Jackson-Menaldi. "Changes in Glottal Contact Quotient During Resonance Tube Phonation and Phonation With Vibrato." *Journal of Voice* 27, no. 3 (2013): 305-11. <https://doi.org/10.1016/j.jvoice.2013.01.017>.

Isherwood, Nicholas. "Vocal Vibrato: New Directions." *Journal of Singing* 65, no. 3 (2009): 271-83. <https://www.proquest.com/scholarly-journals/vocal-vibrato-new-directions/docview/1403924/se-2>.

Katok, Danya. "HEALTHY MINIMIZATION OF VIBRATO: AN EXPLORATION OF 'STRAIGHT TONE.'" *The Choral Journal* 62, no. 4 (2021): 8-19. <https://www.proquest.com/scholarly-journals/healthy-minimization-vibrato-exploration-straight/docview/2622301455/se-2>.

Katok, Danya. "HEALTHY MINIMIZATION OF VIBRATO: AN EXPLORATION OF 'STRAIGHT TONE.'" *The Choral Journal* 62, no. 4 (2021): 8-19. <https://www.proquest.com/scholarly-journals/healthy-minimization-vibrato-exploration-straight/docview/2622301455/se-2>.

Large, John and Iwata, Shigenobu. "The Significance of Air Flow Modulations in Vocal Vibrato," *The NATS Bulletin* 32, no. 3 (1976): 44; cited by James C. McKinney, *The Diagnosis and Correction of Vocal Faults* (1994), 197.

Miller, Richard. *The Structure of Singing*. Schirmer Books, 1996.

Montgomery, Alan. "The Issue of Straight Tone Singing." In *Opera Coaching*, 2nd ed., 1:69-71. Routledge, 2020. <https://doi.org/10.4324/9780367809676-12>.

Moss, Heidi. "A Copernican Shift: Reframing How We Think About Breath in Singing." *Journal of Singing* 79, no. 2 (2022): 233-242. <https://doi.org/10.53830/IWVK1586>.

Olson, Margaret. "Vibrato vs. Nonvibrato: The Solo Singer in the Collegiate Choral Ensemble." *Journal of Singing* 64, no. 5 (2008): 561–64.
<https://www.proquest.com/scholarly-journals/vibrato-vs-nonvibrato-solo-singer-collegiate/docview/1402320/se-2>.

Sackett, Kyle. "Vocal Versatility: A Practical Guide for Contemporary Choral Singers, Teachers, Conductors, and Composers." DMA diss., University of Wisconsin–Madison, 2024. ProQuest (31766756).

Schmidt, Andrew P. "Choral Vibrato: The Hundred Years' War." *The Choral Journal* 64, no. 6 (2024): 20–30.
<https://www.proquest.com/scholarly-journals/choral-vibrato-hundred-years-war/docview/2957153942/se-2>.

Smith, Stephen W. *The Naked Voice: A Wholistic Approach to Singing*. Oxford University Press, 2007.

Sherburn-Bly, Rebecca. "On the Voice: Straight Tone in the Choral Arts: A Simple Solution." *The Choral Journal* 47, no. 8 (2007): 61–69.
<https://libezproxy.syr.edu/login?url=https://www.proquest.com/scholarly-journals/on-voice-straight-tone-choral-arts-simple/docview/1033946/se-2?accountid=14214>

Shipp, Thomas, E. Thomas Doherty, and Stig Haglund. "Physiologic Factors in Vocal Vibrato Production." *Journal of Voice* 4, no. 4 (1990): 300–304.
[https://doi.org/10.1016/S0892-1997\(05\)80045-1](https://doi.org/10.1016/S0892-1997(05)80045-1).

Titze, Ingo R., Brad Story, Marshall Smith, and Russel Long, "A reflex resonance model of vocal vibrato," *The Journal of the Acoustical Society of America* 111, 2272-82.
<https://doi.org/10.1121/1.1434945>.

Walker, Gayle. "Vibrato, Science, and the Choral Singer." *The Choral Journal* 47, no. 6 (2006): 36–46.
<https://www.proquest.com/scholarly-journals/vibrato-science-choral-singer/docview/1033327/se-2>.

Warren, John F. "Placing Your Singers for Optimal Sound." Unpublished manuscript.

Weber, Steven Todd. "An Investigation of Intensity Differences between Vibrato and Straight Tone Singing." DMA diss., Arizona State University, 1992. ProQuest (303975730).

Wilcox, John C. "The 'Straight Tone' in Singing." *Music Educators Journal* 32, no. 2 (1945): 62–63. <https://doi.org/10.2307/3386863>.

Vennard, William. *Singing: The Mechanism and the Technic*. Carl Fischer, Inc., 1968.